Răspuns :
Răspuns:
Explicație pas cu pas:
Dacă AC⊥AD, atunci punctele A,C,D sunt plasate pe un cerc cu diametrul CD. Dacă AD=AB=BC, coarde egale, deci și arce egale. Atunci m(arcAD)=m(arcAB)=m(arcBC)=180°:3=60°. Atunci ∡ACD=(1/2)·m(arcAD)=30°=∡DAE. Atunci DE=(1/2)·AD. Fie DE=x, AD=2x=AB=BC. ⇒CD=4x. P(ABCD)=AB+BC+CD+AD=2x+2x+4x+2x=10x. CE=3x.
După T.Înălțimei, AE²=DE·CE=x·3x, ⇒3x²=AE², ⇒ x=AE/√3.
Atunci P(ABCD)=10·AE/√3 cm.
b) Aria=AE·(AB+CD)/2=AE·(2x+4x)/2=AE·6x/2=AE·3x=3·AE·AE/√3=AE²·√3.
c) După T.Catetei, AC²=CE·CD=3x·4x, deci 12x²=AC², ⇒ AC=x·√12=2√3x=2√3·AE/√3=2·AE cm = BD.
ps. La final înlocuești AE prin radical de ord 12 din 3....Succese!
Mai ai de raționalizat numitorul la perimetru.... :))))

Vă mulțumim pentru vizita pe site-ul nostru dedicat Matematică. Sperăm că informațiile prezentate v-au fost utile. Dacă aveți întrebări sau aveți nevoie de suport suplimentar, nu ezitați să ne contactați. Ne bucurăm să vă revedem și vă invităm să ne adăugați în lista de favorite!