Răspuns :
Răspuns:
Explicație pas cu pas:
a>b>c (1), abc-bc-40b-40c=20, ⇒a·100+bc-bc-40b-40c=20, ⇒
a·100-40b-40c=20, ⇒20·(a·5-2b-2c)=20, ⇒5a-2b-2c=1 |+2b+2c, ⇒5a=1+2b+2c, ⇒5a=1+2·(b+c). (2)
Din (2), ⇒ a=impar. Deoarece a>b>c, pornim cu valoare a=9.
Pentru a=9, (2) ⇒5·9=1+2·(b+c), ⇒45=1+2·(b+c), ⇒ 2·(b+c)=45-1, ⇒ 2·(b+c)=44, ⇒ b+c=44:2, ⇒b+c=22 , nu convine.
Pentru a=7, (2) ⇒5·7=1+2·(b+c), ⇒35=1+2·(b+c), ⇒ 2·(b+c)=35-1, ⇒ 2·(b+c)=34, ⇒ b+c=34:2, ⇒b+c=17, nu convine, deoarece b<a.
Pentru a=5, (2) ⇒5·5=1+2·(b+c), ⇒25=1+2·(b+c), ⇒ 2·(b+c)=25-1, ⇒ 2·(b+c)=24, ⇒ b+c=24:2, ⇒b+c=12 , nu convine, deoarece b<a.
Pentru a=3, (2) ⇒5·3=1+2·(b+c), ⇒15=1+2·(b+c), ⇒ 2·(b+c)=15-1, ⇒ 2·(b+c)=14, ⇒ b+c=14:2, ⇒b+c=7 , nu convine, deoarece b<a.
Pentru a=1, nu convine, deoarece b<a.
Concluzie. Nu există.
p.s. Dacă relația (1) era a<b<c, atunci după o cercetare analogică se obține a=7, b=8, c=9
Verificare: 789-89-40·8-40·9=700-320-360=700-760=20.
Poate ai greșit relația (1) ???
Succese la o nouă cercetare... :)))
Vă mulțumim pentru vizita pe site-ul nostru dedicat Matematică. Sperăm că informațiile prezentate v-au fost utile. Dacă aveți întrebări sau aveți nevoie de suport suplimentar, nu ezitați să ne contactați. Ne bucurăm să vă revedem și vă invităm să ne adăugați în lista de favorite!